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Abstract

Crime prediction is crucial to criminal justice decision makers and efforts to

prevent crime. The paper evaluates the explanatory and predictive value of

human activity patterns derived from taxi trip, Twitter and Foursquare data.

Analysis of a six-month period of crime data for New York City shows that these

data sources improve predictive accuracy for property crime by 19% compared to

using only demographic data. This effect is strongest when the novel features

are used together, yielding new insights into crime prediction. Notably and

in line with social disorganization theory, the novel features cannot improve

predictions for violent crimes.

Keywords: Predictive Policing, Crime Forecasting, Social Media Data, Spatial

Econometrics

1. Introduction

Every day, people leave their neighbourhood to commute to work, shop in

malls or relax in museums and bars. Such travel creates a social flow of both

crime targets and perpetrators that connect areas beyond spatial distance and

facilitates criminal activity (Wikström et al., 2010).
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Exploitation of location-based data offers new perspectives on the mecha-

nisms of crime emergence and helps predict the occurrence of crime. Govern-

ment institutions and especially police depend on adaptive, short-term crime

predictions to anticipate changes and breaks in crime patterns and allocate

scarce resources efficiently (e.g., Xue & Brown, 2006).

The objective of this paper is to establish the performance of data on human

dynamics in predicting crime. In pursuing this goal, the paper proposes pre-

dictive models that extend conventional crime forecasts by incorporating three

sources of data: public venues, social media activity and taxi flows. We suggest

alternative ways to extract features from the data sources and examine how

their interaction improves predictive performance. This provides concrete guid-

ance to decision makers on how to leverage these new data sources for accurate

crime forecasting.

Empirical results using crime data from New York City confirm the rele-

vance of the proposed features. Using a rolling-window prediction approach, we

demonstrate that including the novel features significantly improves crime pre-

dictions for some types of crime. The results reveal interaction effects: Features

from different data sources work best when used in combination.

Our dual approach of prediction and explanatory analysis addresses policy

makers’ concerns about preventing crime in a predictive policing and a wider

prevention context. In line with social disorganisation and opportunity theory,

our results add to a better understanding of the link between crime opportunities

and human dynamics and highlight new areas for policy design.

The paper is organised as follows: Section 2 discusses related work. Section 3

introduces spatial and non-spatial prediction models. Section 4 outlines the data

sources and feature construction methods. Empirical results are presented in

Section 5 and discussed in Section 6. Section 7 concludes the paper.
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2. Related Work

Our study uses online data together with spatial analysis to understand

behavioural aspects of the emergence of crime and how this improves crime

prediction. In this section, we briefly introduce seminal explanatory studies that

use spatial analysis to provide empirical support for prominent crime theories.

Then, we elaborate how online data sources have been used in explanatory

contexts before presenting forecasting studies that use online data or spatial

analysis to predict crime.

The main theories concerned with explaining the spatio-ecological dimen-

sion of crime are opportunity theory and social disorganisation theory. The

former analyses crime events as opportunities created by the intersection of a

suitable target, a motivated offender, and lack of supervision (Cohen & Felson,

1979). Social disorganisation theory considers neighbourhood characteristics

that influence the likelihood of criminal activity among inhabitants. A lack of

social control and social cohesion within a community combined with structural

disadvantages gives rise to criminal behaviour Kubrin & Weitzer (2003).

Classical crime modelling draws on these theories and uses regression anal-

ysis to identify socio-economic predictors of criminal behaviours on an aggre-

gated level. The findings emphasise the relevance of demographic characteristics

such as residential instability, ethnic heterogeneity and population density (e.g.

Sampson et al., 1997). These results have been supplemented with spatial analy-

sis to evaluate the relevance of spatial dependence. Spatial proximity to violence

has been shown to be more important than demographic data (Morenoff et al.,

2001; Kubrin, 2003).

With the availability of online data, crime modelling has shifted to incor-

porating aggregated, anonymous human behavioural data. Geo-tagged Twitter

data in particular has been used to understand how topics on social media re-

late to crime, for example through term-frequency analysis (Williams et al.,

2017). Dynamic data on human activity has also been used to model crime.

Traunmueller et al. (2014) examine correlations between people activity fea-
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tures, which they derive from mobile phone data, and monthly crime rates.

Paralleling the development in classical crime modelling, online data has

been combined with spatial analysis to explore their relationship. Bendler et al.

(2014) include Twitter and local points of interest (POI) data in a geographically

weighted regression to capture human activity and explore spatial dependence

between crime locations. They show that only some crimes such as burglary are

related to Twitter activity.

Wang et al. (2016) also consider POI data, which they integrate with taxi

flow data to model yearly crime rates in Chicago. They find a model using both

types of information to outperform models using only POI or taxi data. Such

synergy hints at an interdependence between the two sources, which has also

been observed by Bendler et al. (2014).

In contrast to explanatory studies, crime prediction has paid comparatively

less attention to the intersection of space and human dynamics and usually

uses online data as inputs for crime prediction. For example, Aghababaei &

Makrehchi (2018) employ temporal topic detection to identify Twitter topics

predicting crime. Bogomolov et al. (2014) train a Random Forest to predict

high-crime areas using features related to visitors volumes based on telecommu-

nication records. Gerber (2014) find that prediction models using Twitter topic

modelling outperform Kernel density estimation-based models.

There are few predictive studies using spatial analysis. Most notably, the

work by Rosser et al. (2017) analyses criminal incidents on a street segment-

level instead of a grid- or census unit-level. However, human dynamics are not

explicitly taken into consideration since the predictions are not based on any

analysis of traffic volume or pedestrian density on those streets.

Xue & Brown (2006) model the coordinates of crime as a locally optimal site

picked by the offender from a set of spatial alternatives to commit the crime.

Similar to Rosser et al. (2017), they do not take human dynamics into account.

An interesting approach to synthesising different data sources for crime pre-

diction is proposed by Kang & Kang (2017) who train a deep neural network

(DNN) to integrate Google Streetview images and temporal features into a joint
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Study
Explanatory/
predictive

Spatial
Human
Dynamics

Machine
Learning

Crime Type City
Time
Frame

Wang et al. (2016) E X X all crime Chicago yearly

Bendler et al. (2014) E X X assault, burglary,
homicide, theft, . . .

San Francisco hourly

Traunmueller et al. (2014) E X street vs. indoor London monthly

Williams et al. (2017) E X burglary, theft,
drugs, violent
crime, . . .

London monthly

Gerber (2014) P X theft, battery,
drugs, burglary, . . .

Chicago daily

Xue & Brown (2006) P X X burglary Richmond, VA monthly

Rosser et al. (2017) P X X residential burglary anonymous UK city daily

Bogomolov et al. (2014) P X X (hotspot
classification)

London monthly

Kang & Kang (2017) P X X all crime Chicago daily

Aghababaei & Makrehchi (2018) P X X theft, drugs,
burglary, ...

Chicago daily

This study E and P X X X violent and
property crime

New York weekly

Table 1: Literature Overview
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feature as input layers for DNN-based crime prediction.

Table 1 shows how explanatory studies frequently incorporate behavioural

data and spatial dependence, whereas predictive studies focus on only one of the

two aspects. Therefore, a contribution of this paper is the joint consideration

of data on spatial structure and human dynamics. A second contribution stems

from combining explanatory and predictive analysis as it is crucial to understand

the underlying process of crime generation to not only successfully predict crime

incidents but also prevent crime (Camacho-Collados & Liberatore, 2015).

3. Methodology

Crime rates depend on the underlying population at risk, which need not

correspond to the residential population in a geographic unit (eg Malleson &

Andresen, 2015). Therefore, a common modelling approach, which we adopt in

this study, is to use counts of crime incidents. Our data forms a panel of crime

counts and covariates for 1974 census tracts for 26 weeks, indexed by i and t,

respectively.

Our analysis approach is two-fold: our main focus is crime prediction, which

we supplement with explanatory analysis. We use spatial econometric models

and machine learning techniques to fit models and predict crime. In the follow-

ing section, we first describe the econometric models in Subsections 3.1 and 3.2.

Then, we describe the machine learning methods used in Subsection 3.3. We

use a rolling window prediction approach which we explain in Subsection 3.4

where we also present the linear predictors.

Before detailing the models, we introduce some notation. Modelling crime

counts in a city begins with a specific, bounded two-dimensional area D ⊂ R2,

where D denotes the surface area of the city. D can be partitioned into a finite

number N of well-defined, non-overlapping areal units, e.g. census tracts.

Crime events are modelled as realisations of a point process on D. The loca-

tions of kt crime events at time t are denoted by St = {s1t, . . . , sktt}. This allows

modelling the number of realised events in an areal unit as a time-dependent
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count variable. Let this count variable be defined as m(i, t) =
∑kt
l=1 1(slt ∈

i), i = 1, . . . , N such that m(i, t) gives the number of crimes in unit i at time t.

Let y denote the vector of NT count variables observed at the N areal units in

T periods such that m(i, t) ≡ yit.

Spatial dependence between areas can take the form of a Markov random

field, which defines a neighbourhood for each element in y. An areal unit j is

a neighbour of areal unit i if the conditional distribution of yi depends on yj

(Cressie, 1993). Let Ai = {j : j is a neighbour of i} be the neighbourhood of

unit i. Note that Ai excludes unit i.

3.1. Linear Models

Consider the simple pooled linear panel regression model:

y = Xβ + e, e ∼ N(0, σ2INT ), (1)

where X is a NT ×K matrix of K regressors. In the presence of spatial depen-

dence, the error terms in (1) are no longer uncorrelated. Approaches to account

for such error correlation include the simultaneous autoregressive (SAR) and

the conditional autoregressive (CAR) model.

The SAR model introduces spatial structure through a spatial lag (Cressie,

1993, p. 406):

y = (IT ⊗ ρW )y +Xβ + ε, ε ∼ N(0, σ2INT ), (2)

where ⊗ denotes the Kronecker product, IT denotes the identity matrix of

order T , and W is a N ×N binary matrix specifying which areas are spatially

adjacent with wii = 0 ∀i. ρ is the parameter that specifies the magnitude of

spatial dependence.

The inclusion of a spatial lag of the dependent variable accounts for spatial

spillovers and a mismatch of the spatial scale with the spatial event. Both

effects occur in crime modelling since the contagion effect of crimes leads to

a diffusion through space. In addition, economic and criminal features do not
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match perfectly with the spatial units. A spatial lag SAR model is a convenient

choice to account for these characteristics (Anselin et al., 2008).

The CAR model introduces a spatial dependence parameter in the error

term which accounts for small-scale spatial variation (Cressie, 1993, p. 407).

This yields the following model:

y = Xβ + ε, (3)

ε ∼ N
(
0, σ2{IT ⊗ (IN − δW )−1}

)
,

where W is again a N×N spatial adjacency matrix and δ denotes the magnitude

of spatial dependence between neighbouring regions.

The CAR model introduces spatial structure as a Markov random field, such

that the conditional distribution of each area depends on the neighbourhood.

The distribution of yit conditional on all yjt can be shown to be

yit|yjt ∼ N

X>itβ +
∑
j

δWij(yjt −X>jtβ), σ2
i

 , (4)

for i 6= j, where σ2
i denotes the conditional variance (Cressie, 1993, p. 407).

This conditional dependence structure is different from the structure modelled

in a SAR model. There, the inclusion of the spatial lag means that values

in unit i do not only depend on values in the direct neighbourhood Ai but

also on higher-order neighbours, i.e. neighbours of neighbours. Therefore, the

SAR model implies a global dependence structure compared to the CAR model

(Anselin et al., 2008)

3.2. Count Models

Linear models offer a broad framework to include spatial structure but fail to

accommodate the integer-valued and non-negative nature of crime counts. Small

counts are better modelled by a Poisson Generalised Linear Model. In the case
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of crime counts, the Poisson parameter λ represents the expected incident count:

λ = E(y |X) = eX
>β . (5)

Similar to the linear model, the errors of the Poisson model in 5 are no longer

uncorrelated under spatial dependence. Poisson Generalised Linear Mixed Mod-

els (GLMMs) account for this dependence by incorporating a random effect in

the GLM predictor. GLMMs model E(y |X) as a linear combination of fixed

effects X and random effects Z with a logarithmic link function (Agresti, 2007):

log λit = X>itβ + Zitηi. (6)

Here, Zη are location-specific random effects. At each cross-section t, Z is a

N×N indicator matrix of the spatial units, which means that the random effect

is simply a random intercept added to the conditional mean. The distribution

of the random vector η is assumed to be multivariate normal:

η ∼ N(0, D), D = σ2Q−1. (7)

Q is a symmetric spatial dependency matrix different from the adjacency matrix

W used before. Its entries are as follows:

Qij =


|Ai| if i = j,

−1 if j ∈ Ai and i 6= j,

0 if j /∈ Ai and i 6= j,

(8)

where the |Ai| entries on the diagonal denote the size of the neighbour set and

neighbours are indicated by −1 (Leroux et al., 2000, p. 186). In the non-spatial

Poisson GLM in (6), the variance is equal to the expectation (Agresti, 2007).

In the model in (6), this is not the case. Here, σ accounts for both the variance

and spatial dependence. The parameters in (6) and (7) are estimated using

restricted maximum likelihood (REML) and Fisher Scoring (Kneib, 2003).
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3.3. Machine Learning Models

Previous models make assumptions about the data-generating process and

consider a linear additive relationship between crime counts and covariates.

Machine learning techniques are more flexible and account for non-linearity in

a data-driven manner (Kuzey et al., 2014). We concentrate on random forest

(RF), gradient boosting machines (GBMs), and feed-forward artificial neural

networks (ANNs), all of which have shown promising results in previous studies

(e.g. Bhattacharyya et al., 2011; Delen, 2010).

RF develops an ensemble of size k through drawing k bootstrap samples from

the training data. The base models in RF consist of individual decision trees,

which are grown from the bootstrap samples. To increase randomness among

the base models, RF determines the best split during tree growing among a

randomly sampled subset of covariates (Breiman, 2001). The model prediction

consists of the simple average calculated across the k base models.

GBMs embody the idea of additive modelling. The algorithm incrementally

develops an ensemble through adding base models. In our paper, we use re-

gression trees as base models. These are fitted to the residuals via the negative

gradient of the loss function of the current ensemble. GBM predictions are ob-

tained by calculating a weighted average over base model forecasts, whereby the

weights are determined during gradient descent (Friedman, 2002).

An ANN model consists of interconnected layers of processing units (neu-

rons) with connection weights representing the model parameters. Estimating

an ANN model involves minimising loss functions with respect to connection

weights using gradient-based methods. ANNs calculate the output of a neuron

as a non-linear transformation of the weighted sum over its input neurons. The

transformations are called activation functions and allow an ANN to capture

non-linear patterns in data (Kim & Kang, 2016). We use a Rectified Linear

Unit (ReLU) activation function.
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3.4. Rolling window prediction

We use a rolling window prediction approach where we use all y1:t = (y1,1:t, . . . , yN,1:t)
>

to estimate our models and produce forecasts ŷt+1 = (ŷ1,t+1, . . . , ŷN,t+1)> for

the next week. We compute the prediction errors et+1 = yt+1− ŷt+1. We repeat

this step for t = h, . . . , T − 1 where h is the smallest number of observations

used for estimating the model. We set h = T/2. We then calculate the total

mean squared error based on the obtained errors MSE = 1
Nh

∑N
i=1

∑T
t=h+1 e

2
it.

For the linear model, the predictions for weekly crime counts are obtained by

using the best linear unbiased predictor or its panel equivalent (Baltagi et al.,

2011). Table 2 gives the predictors for the time period t + 1 for the regression

models. The SAR predictor is obtained by spatially lagging the linear predictor

Model Predictor

LR ŷt+1 = Xt+1β̂

SAR ŷt+1 = (IN − ρW )−1Xt+1β̂

+ (IN − ρW )−1ε̂

CAR ŷi,t+1 = X>i,t+1β̂ +
∑
j δwij(

(1/t)
∑t
k=1(yjk −X>jkβ̂)

)
GLM ŷt+1 = exp(Xt+1β̂)

GLMM ŷt+1 = exp(Xt+1β̂ + Zt+1η̂)

Table 2: Predictors for the spatial linear regression models considered in the study.

and adding the spatially lagged error vector of the model. The CAR predictor

is obtained by taking a time-averaged conditional expectation.

Machine learning models require auxiliary data for hyperparameter tuning

to enable adaption of a learning algorithm to a given task (e.g., Carneiro et al.,

2017). For such models, we use the first 1, . . . , t − 2 weeks in the window of

length t as training set and the last two weeks as validation set for parameter

tuning. This way, we still produce an out-of-sample one-step ahead forecast for

t + 1. We report the models with the lowest prediction errors on the test set.

We tune the hyperparameters using grid search (see Appendix A for details) at

each window. Since we include lagged crime counts as predictors, the rolling
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window approach corresponds to cross-validation for time-dependent data.

4. Data Integration and Feature Construction

Since the data sources we use (census, POI, Twitter and taxi flow data)

have different time coverages, we use the most recent complete overlap from

June 1, 2015 to November 29, 2015. We aggregate the temporal data to weekly

intervals which begin uniformly on Monday. The final data set covers 26 weeks.

As discussed in Section 3.4, we set h = T/2 = 13 weeks. This choice results in

13 windows of length 1 : t, t = 13, . . . , 25, on which we train our models. We

then produce 13 separate one-step ahead forecasts for week t + 1. We use the

human dynamics features at time t to predict crime counts at time t+ 1.

The short time frame of the data makes explicit modelling of temporal effects

infeasible since 26 weeks are not sufficient to reliably estimate weekly or monthly

seasonality. We also do not include a dummy for the week of the first of a month

to account for a potential “pay day effect”: While one might expect that criminal

behaviour associated with drinking increases after receiving the monthly salary,

this implied human activity is already captured by our novel data sources.

The following subsections introduce the data sources. For each source, we

elaborate on alternative options for feature engineering since different formu-

lations may differ in their predictive power. The definitions always include a

general definition using raw counts and additional versions similar to data stan-

dardisation or variance reduction such a log-transformed features. We do not

consider further feature transformations such as Principal Component Analysis

due to their non-interpretability. Section 4.6 details how the final set of features

has been selected.

4.1. Census

The spatial units of analysis are census tracts as defined by the US Census

Bureau. We use the coordinates of point-referenced data to match them to the

corresponding census tract. We select the following eight demographic variable
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from Summary File 1 of the 2010 census data (U.S. Census Bureau, 2017) based

on previous studies (e.g., Wang et al., 2016): the total population in the census

tract, the median age of the population, the share of males, the share of the

Black, Asian, and Hispanic population, respectively, the rate of female-headed

family households, and the rate of vacant accommodation.

4.2. New York City Crime Data

Data on criminal incidents is provided by the New York City Police Depart-

ment (New York City Police Department, 2016). We focus on violent and prop-

erty crime because their spatial distribution differs, which facilitates examining

the proposed features in a context of varying spatial dependence. Violent crime

encompasses murder and non-negligent manslaughter, robbery, and aggravated

assault. Since rape incidences are not geo-located in the NYPD dataset, we ex-

clude them from the analysis. Property crime comprises burglary, larceny-theft,

motor vehicle theft, and arson.

Figures 1a and 1b show the spatial distribution of crime for the analysis

period of June to November 2015. Property crime exhibits a more even dis-

tribution than violent crime. The strength of spatial correlation between areas

is tested using Moran’s I (Anselin et al., 2008). For both crime types and ev-

ery time period, the null hypothesis of no spatial dependence is rejected with

p < 0.000.

4.3. Foursquare

We gather POI data from Foursquare, a mobile recommendation app. We

consider POI data a characterisation of the census tract since POI categories at-

tract specific groups of people. For example, one can expect that more nightlife

venues attract drunken behaviour. Prior work has evidenced a connection be-

tween criminal activity and local points of interest in a geographic area (Bendler

et al., 2014). Foursquare categorises all venues along nine main dimensions:

nightlife, food, arts & entertainment, residence, shops, travel, outdoors & recre-

ation, college & education, and professional. In total, we obtain 47,113 POI in

the geographic area of interest.
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(a) Violent Crime (b) Property Crime

Figure 1: Number of crime incidents between June and November 2015. In the property crime
map, the area around Penn Station (largest outlier with 2002 incidents) is excluded for more
consistent colour scaling.

Two different ways of constructing the feature from POI data are considered:

1. the total counts of venues per category, 2. the share of categories on the total

number of venues in the census tract.

4.4. Taxi

The NYC Taxi & Limousine Commission (2016) provides taxi flow data. We

argue that taxi flows illustrate connections between different neighbourhoods

beyond what is already covered through spatial proximity. Around 25% of

all taxi trips end in a census tract that is not a neighbour of the tract they

started in, suggesting that the taxi feature captures connections between census

tracts that go beyond spatial proximity. Figure 2 supports this view and, in

agreement with Wang et al. (2016), confirms taxi data as a valuable source for

crime modelling.

We consider all trips within New York City in the analysis time frame but

exclude trips that start or end outside the analysis area. This gives 70,288,218

trips in the 26 weeks. We aggregate individual trips to a weekly connection flow

matrix F , with rows (columns) of F referring to the census tract where the trip

started (ended). Hence, fij denotes the number of trips made from tract i to j
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(a) Pickups (b) Dropoffs

Figure 2: Coordinates of complete taxi trips in New York City in week 46 in 2015.

for each time interval. Note that fii = 0 ∀i as otherwise, crime rate of census

tract i would be used as its own predictor.

The taxi flow feature is then constructed as ct = Ftyt−1 such that neigh-

bouring crime rates are weighted by the magnitude of flow F . It is crucial to

note that the crime vector y is lagged by a week to prevent unintended implicit

simultaneity of the response yt and its predictors. The week index t is dropped

for ease of notation.

We propose three different ways to construct c and demonstrate the calcu-

lation for c1, the feature of example tract 1:

1. Raw multiplication: One can define t as the simple matrix multiplication

of the flow matrix F and the crime count vector y:

c1 = f12y2 + . . .+ f1NyN .

2. Normalised by source: The taxi flow arriving in each census tract is nor-

malised by the total number of flows leaving the source census tract. For

example, the flow leaving the second census tract towards the first tract

is normalised by all flows leaving from the second tract:

c1 =
f21

f21 + f23 + . . .+ f2N
y2 + . . .+

fN1∑N
i=1 fNi

yN .

15



3. Normalised by destination: The taxi flow arriving in each census tract is

normalised by the total number of flows arriving in the destination census

tract:

c1 =
f21

f21 + f31 + . . .+ fN1

y2 + . . .+
fN1∑N
i=1 fi1

yN .

4.5. Twitter

We use Twitter data as a proxy for day-to-day population density through

tourists or visitors. Accordingly, we focus on the number of Tweets in an area

but do not attempt to extract their topical content. While Foursquare data

covers venues as potential destinations of human activity and taxi flow data

records where people move to, some of the overall activity is not captured. For

example, we observe high numbers of tweets in the census tract containing the

9/11 Memorial site, unaccounted for by any other feature, whether novel or

demographic.

We source Twitter data from Pfeffer & Morstatter (2016) who provide IDs

to tweets published in the United States between June 1, 2015 and Novem-

ber 30, 2015. We aggregate the number of tweets per week and census tract,

and implement four versions of the Twitter feature: 1. Using the full activity,

2. counting night-time tweets only, 3. using log-transformed full activity, 4. us-

ing log-transformed night-time activity. Any tweet sent out between 22pm and

6am contributed to the night-time feature. Taking the logarithm of the number

of tweets serves to reduce variation between census tracts.

4.6. Evaluation and Feature Selection

We proposed multiple variable definitions for each novel data source. Since

we are interested in interactions, we select the best combination of all feature

types using a variable selection procedure where we estimate CAR models for

all possible combinations of the definitions. We then produce one-step ahead

forecasts for 13 weeks in total using the procedure described in Section 3.4

and pick the combination with the overall lowest MSE. In comparison with in-

sample goodness-of-fit statistics such as R2, the MSE-based selection strategy
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Twitter Taxi

Raw Destination Source

All 4.5415 4.5221 4.8355
Night 4.5301 4.5272 4.8033
log All 4.5259 4.5329 4.8744
log Night 4.5193 4.5051 4.8626

(a) Property crime

Twitter Taxi

Raw Destination Source

All 0.5402 0.5396 0.5400
Night 0.5411 0.5404 0.5400
log All 0.5418 0.5405 0.5414
log Night 0.5417 0.5392 0.5398

(b) Violent crime

Table 3: MSE values for crime predictions from CAR models including POI data in the form
of the total counts of venues per Foursquare category together with alternative definitions of
the Twitter and taxi features.

emphasises the predictive value of a feature on out-of-sample data. We suggest

that a prediction-centric feature selection strategy is better aligned with the

goal of forecasting crime accurately.

While some machine learning techniques such as Random Forests entail vari-

able importance rankings that can guide variable selection, they may pick up

non-linear relationships that linear models cannot accommodate. This would

give machine learning models an advantage in subsequent comparisons. To coun-

terbalance this, we select feature definitions through optimising predictions of

a linear model. Out of the linear models, we choose the CAR model because it

models the outcome variable as a linear combination directly (rather than on the

log scale) and because the implied spatial dependence structure is local rather

than global. Therefore, the selected feature definition combination is expected

to suit the wide range of spatial and non-spatial models we consider.

Tables 3a and 3b show MSE values for property and violent crime. We

present results for alternative definitions of the Twitter and taxi features. Total

counts of venues for Foursquare category produces uniformly better results than

the venue share. Overall, we observe the best results with the non-normalised

POI feature, log-transformed nightly tweet activity, and taxi data normalised

by destination. For the POI feature, however, using total counts outperforms

normalisation. The counts preserve differences in the POI distribution across

New York City, which results in better predictions than the shares of categories.

17



Variable Mean Std. deviation Median Min Max

Property crime 1.45 2.34 1.00 0.00 56
Violent crime 0.37 0.74 0.00 0.00 11
Population 3,829.61 2,118.97 3,431.50 56 26,588
Median age 35.92 6.01 35.40 13.40 80.90
Male 0.48 0.03 0.48 0.32 0.94
Black 0.28 0.31 0.12 0.00 0.96
Asian 0.13 0.16 0.06 0.00 0.88
Hispanic 0.27 0.23 0.18 0.00 0.91
Vacancy rate 0.08 0.06 0.07 0.00 0.65
Female-headed HH 0.20 0.12 0.17 0.00 0.58
log night tweets 1.22 1.42 0.69 0.00 7.87
Entertainment POI 2.90 3.39 2.00 0 64
Uni POI 2.51 3.43 2.00 0 61
Food POI 3.01 3.01 2.00 0 28
Professional POI 2.61 2.47 2.00 0 20
Nightlife POI 2.82 2.81 2.00 0 27
Outdoors POI 2.29 2.33 2.00 0 19
Shops POI 2.75 2.73 2.00 0 26
Travel POI 2.52 2.64 2.00 0 26
Residential POI 2.76 2.51 2.00 0 22
Taxi (property) 1.45 3.21 0.28 0.00 58.26
Taxi (violent) 0.37 0.77 0.08 0.00 22.92

N = 1974 census units observed over T = 26 weeks: 51,324 observations

Table 4: Summary statistics for the data set

We provide a short data overview in Table 4. We find that the new features

have low correlations with the demographic variables (all Pearson’s r < 0.35)

but higher correlations with crime of up to 0.63. This makes them valuable

predictors in addition to the demographic variables which capture characteristics

of the residential population only.

5. Results

We consider eight different combinations of the features to investigate inter-

actions. The census data serves as baseline and is included in all settings. The

other groups are added in all possible combinations which we number from 1 to

8 (Table 5).
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Features Settings

1 2 3 4 5 6 7 8

Census X X X X X X X X
POI X X X X
Taxi X X X X
Twitter X X X X

Table 5: Definition of experimental settings in terms of different groups of crime predictors

We begin with examining the explanatory power of the individual features

and their interactions. In view of the large number of fitted models (2 types

of crime × 5 model specifications × 8 settings over 13 windows), we do not

reproduce all results. Instead, Tables 6 and 7 show the regression coefficients

only for the largest possible window of 25 weeks and for setting 8, which includes

all feature groups. As detailed in Appendix B, the coefficients are stable over

different fitting windows.

Since the significance levels vary across models, we do not discuss each model

individually. Instead, we focus on effects identified as significant by all models

and refer to the average effect over models in the text. As the coefficients for

GLM and GLMM are on the log-scale, we present the effects for linear and

exponential models separately.

For property crime, the largest effect size across all non-exponential models

is observed for the vacancy rate, which is significantly positively associated with

property crime counts. The new features are significantly associated with prop-

erty crime. In particular, a 1 unit increase in the weekly taxi flow is associated

with an increase of 0.21 property crime counts. Similarly, an increment of one

venue in the shops category results in a 0.13 increase of crime counts. Inter-

estingly, a single additional residential venue, often elderly homes, is associated

with a 0.05 decrease of property crime. This is an intuitive result when consid-

ering the higher presence of watchful neighbours. A similar result is observed

for nightlife venues, which are associated with a 0.07 decrease. While the Twit-

ter feature is significant, its effect of property crime is comparatively small as a
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Variable CAR SAR LR GLM1 GLMM1

Intercept −0.4255 −0.9090*** −0.9500 −0.2687*** −1.5419***
(0.2448) (0.2220) (0.2246) (0.0794) (0.0001)

Population 0.0001* 0.0001*** 0.0001 0.0001*** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Median age 0.0124*** 0.0011 −0.0003 −0.0076*** −0.0012***
(0.0024) (0.0018) (0.0018) (0.0008) (0.0003)

Male −1.3028*** 0.4165 0.8414 −0.5642*** 0.2675***
(0.3929) (0.3708) (0.3752) (0.1331) (0.0000)

Black 0.7076*** 0.1839** 0.2690 0.3999*** 0.7297***
(0.0920) (0.0644) (0.0652) (0.0299) (0.0001)

Asian 0.5009*** 0.1802** 0.2511 0.1389*** 0.2387***
(0.1066) (0.0690) (0.0698) (0.0322) (0.0000)

Hispanic 0.9776*** 0.2430** 0.3017 0.4787*** 0.6541***
(0.1029) (0.0749) (0.0758) (0.0339) (0.0001)

Vacancy rate 2.3155*** 2.0637*** 2.3373 0.6015*** 0.8929***
(0.2095) (0.1777) (0.1799) (0.0519) (0.0000)

Female-headed HH −0.1474 1.3941*** 1.5020 −0.0366 −0.6935***
(0.2418) (0.2054) (0.2078) (0.0887) (0.0001)

log night tweets 0.0987*** 0.1221*** 0.2034 0.2344*** 0.0682***
(0.0099) (0.0087) (0.0089) (0.0031) (0.0032)

Entertainment POI 0.0151*** 0.0157*** 0.0171 −0.0055*** −0.0013
(0.0036) (0.0036) (0.0036) (0.0013) (0.0013)

Uni POI −0.0025 0.0012 0.0023 0.0000 0.0015
(0.0032) (0.0032) (0.0032) (0.0013) (0.0016)

Food POI 0.0543*** 0.0512*** 0.0441 0.0218*** 0.0293***
(0.0045) (0.0045) (0.0046) (0.0017) (0.0019)

Professional POI 0.0185*** 0.0162** 0.0221 0.0241*** 0.0240***
(0.0055) (0.0055) (0.0056) (0.0020) (0.0023)

Nightlife POI −0.0599*** −0.0704*** −0.0761 −0.0334*** −0.0141***
(0.0049) (0.0048) (0.0049) (0.0017) (0.0019)

Outdoors POI 0.0222*** 0.0114* 0.0157 0.0138*** 0.0127***
(0.0058) (0.0058) (0.0058) (0.0021) (0.0023)

Shops POI 0.1433*** 0.1236*** 0.1209 0.0581*** 0.0552***
(0.0049) (0.0049) (0.0049) (0.0017) (0.0012)

Travel POI 0.0335*** 0.0349*** 0.0316 −0.0021 0.0124***
(0.0051) (0.0048) (0.0049) (0.0017) (0.0019)

Residential POI −0.0639*** −0.0474*** −0.0468 −0.0323*** −0.0212***
(0.0052) (0.0050) (0.0050) (0.0020) (0.0021)

Taxi 0.1757*** 0.2060*** 0.2549 0.0480*** 0.0250***
(0.0043) (0.0037) (0.0037) (0.0007) (0.0011)

1 Coefficients are on the log scale.

Standard errors in parentheses. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 6: Estimates and standard errors for property crime in the full setting (setting 8).
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Variable CAR SAR LR GLM1 GLMM1

Intercept −0.6394*** −0.8085*** −0.8674*** −3.2569*** −3.4166***
(0.0863) (0.0780) (0.0785) (0.1781) (0.0001)

Population 0.0000** 0.0000*** 0.0001*** 0.0001*** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Median age −0.0009 −0.0013* −0.0019** −0.0258*** −0.0063***
(0.0008) (0.0006) (0.0006) (0.0020) (0.0004)

Male 0.7738*** 1.0597*** 1.1766*** 2.0673*** 1.2500***
(0.1386) (0.1302) (0.1311) (0.2818) (0.0001)

Black 0.2058*** 0.0412 0.0991*** 1.3403*** 1.5275***
(0.0325) (0.0227) (0.0228) (0.0594) (0.0003)

Asian 0.0773* −0.0142 −0.0094 0.6724*** 1.1663***
(0.0376) (0.0242) (0.0244) (0.0760) (0.0000)

Hispanic 0.3434*** 0.1154*** 0.1931*** 1.2196*** 1.7608***
(0.0363) (0.0264) (0.0266) (0.0646) (0.0003)

Vacancy rate 0.3272*** 0.4673*** 0.5500*** 1.3155*** 0.2863***
(0.0735) (0.0617) (0.0621) (0.1385) (0.0001)

Female-headed HH 0.8420*** 1.4462*** 1.6264*** 1.8172*** 0.3705***
(0.0853) (0.0721) (0.0726) (0.1605) (0.0002)

log night tweets 0.0107** 0.0104*** 0.0158*** 0.1099*** 0.0207***
(0.0035) (0.0029) (0.0030) (0.0065) (0.0053)

Entertainment POI −0.0005 0.0008 0.0027* −0.0056 −0.0072**
(0.0013) (0.0013) (0.0013) (0.0031) (0.0024)

Uni POI 0.0007 0.0021 0.0027* 0.0086** 0.0055*
(0.0011) (0.0011) (0.0011) (0.0028) (0.0026)

Food POI 0.0059*** 0.0073*** 0.0070*** 0.0154*** 0.0245***
(0.0016) (0.0016) (0.0016) (0.0036) (0.0029)

Professional POI 0.0068*** 0.0046* 0.0045* 0.0189*** 0.0181***
(0.0019) (0.0019) (0.0019) (0.0045) (0.0035)

Nightlife POI 0.0035* 0.0026 0.0030 0.0149*** 0.0081**
(0.0017) (0.0017) (0.0017) (0.0037) (0.0030)

Outdoors POI 0.0016 −0.0028 −0.0028 −0.0053 0.0001
(0.0021) (0.0020) (0.0020) (0.0047) (0.0040)

Shops POI 0.0041* 0.0006 0.0001 −0.0056 0.0129***
(0.0017) (0.0017) (0.0017) (0.0039) (0.0033)

Travel POI 0.0034 0.0014 −0.0004 −0.0118** 0.0280***
(0.0018) (0.0017) (0.0017) (0.0039) (0.0031)

Residential POI −0.0058** −0.0029 −0.0027 −0.0026 −0.0091**
(0.0018) (0.0017) (0.0018) (0.0042) (0.0033)

Taxi 0.0530*** 0.0877*** 0.1094*** 0.1205*** 0.0754***
(0.0054) (0.0049) (0.0049) (0.0060) (0.0073)

1 Coefficients are on the log scale.

Standard errors in parentheses. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 7: Estimates and standard errors for violent crime in the full setting (setting 8)
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1 percent increase in night tweets yields a 0.14/100 = 0.0014 increase in crime

counts. For the exponential models, we observe very similar results. The largest

effect is, again, observed for the vacancy rate, followed by the taxi feature. The

same POI venues are identified as influencing property crime counts.

For violent crime, the effect of social cohesion is pronounced. A 10% increase

in the male share predicts a 0.1 increase of violent crime counts. Similarly,

10% increases in the rates of female-headed households and vacant homes are

associated with increases of 0.1 and 0.04 in counts. The relevance of ethnic

heterogeneity is less pronounced compared to property crime.

Rank RF
Mean
rank

GBM
Mean
rank

1. Taxi 1.00 Taxi 1.00
2. log night tweets 2.00 Hispanic 2.00
3. Hispanic 3.00 Entertainment POI 3.00
4. Population 4.25 Median age 3.50
5. Shops POI 4.50 log night tweets 4.08

Table 8: Variable importance for property crime in Setting 8 over 13 windows

Regarding the new features, the effect of the Twitter feature is even smaller

than for property crime. This is contrasted with the taxi feature where a 1

unit increase yields a 0.08 increase in violent crime. As with property crime,

the food category has the largest effect size. Even then, an additional food

venue is associated with a relatively small increase of 0.007 in violent crime.

Again, the results for the exponential models are similar. The largest effects

over both models are observed for demographic variables such as the male share

of female-headed households.

With respect to spatial dependence, we find that estimates of the corre-

sponding parameter in the CAR model are considerably larger than in the SAR

model. For the CAR model, the average estimate for δ is 0.1357. For the SAR

model, we obtain an average ρ estimate of 0.0629. Since the CAR model implies

stronger local autocorrelation we find evidence for substantial dependence on

direct neighbours.

We complete the explanatory analysis by inspecting the variable importance
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Rank RF
Mean
rank

GBM
Mean
rank

1. Taxi 1.00 Taxi 1.00
2. log night tweets 2.00 Female-headed HH 2.00
3. Female-headed HH 3.08 Population 3.08
4. Population 4.25 log night tweets 3.92
5. Black 4.64 Median age 5.00

Table 9: Variable importance for violent crime in Setting 8 over 13 windows

for the machine learning models. Since we estimate models over 13 windows,

we average the importance rank for each variable over 13 windows. We present

the five variables with the overall highest mean ranks in Tables 8 and 9. If the

mean rank equals the importance rank, the variable has that rank across all 13

windows. We find that for both crime types, the taxi feature is highly important.

Furthermore, the Twitter feature, which does not have a large effect size in the

econometric models, is highly ranked for both crime types and machine learning

models. Overall, we find that the regression results and the variable importance

ranking are in agreement.

We now focus on the predictive results. Figures 3 and 4 plot the MSE over

13 periods. For property crime, we observe a clear pattern: the MSE is largest

across all models for setting 1, which uses demographic variables only, and it

decreases upon adding novel features. This provides strong evidence in favour of

using novel data sources for property crime prediction. In addition, we observe

that some features perform better when used in combination. In particular, set-

tings 3 and 5 use the taxi feature together with POI data (setting 3) or Twitter

(setting 5). These settings perform better than the combination of POI data and

Twitter data alone. Adding only one feature already improves the predictive

accuracy but to a lesser degree compared with adding a combination. Setting 8

using all features together produces the best result. Over all models considered,

the MSE in setting 8 is on average 19% lower compared to the baseline setting.

This is the largest improvement compared to all other settings, which result in a

MSE that is on average 11% lower than the baseline. Clearly, the machine learn-

ing models outperform the econometric models across all settings. A Random

Forest in setting 8 produces the smallest prediction error. We suggest that the
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Figure 3: MSE values of different models for property crime predictions.

superior performance is driven by non-linear relationships between the features

and property crime.

For violent crime, there is a very different trend. As before, the machine

learning models perform better than the econometric models but the margin is

smaller. With respect to novel data sources, the econometric models slightly im-

prove on their predictions in the baseline setting (setting 1) when having access

to the full set of features (setting 8). The machine learning techniques, however,

benefit very little from the new features. We observe the lowest prediction error

with a GBM in Setting 1. Over all models, the MSE in the other settings is

1% higher than the MSE in setting 1. We conclude that using data on human

dynamics and POI offers little advantage for violent crime prediction.

We investigate the robustness of our results for the two best performing

models: a RF using setting 8 for property crime and a GBM for violent crime

in setting 1. In Figure 5, we plot the MSE obtained for individual windows

hyperparameter configurations during grid search. Each point on the x-axis

corresponds to a MSE obtained for a single window and hyperparameter con-

figuration. The vertical line corresponds to the lowest average MSE obtained

over all windows as reported in Figures 3 and 4. Especially for property crime,

there is a clear peak regarding the mean MSE for each individual window which

means that the predictions are relatively robust against specific hyperparameter
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Figure 4: MSE values of different models for violent crime predictions.

(a) Property crime: RF in setting 8. (b) Violent crime: GBM in setting 1

Figure 5: MSE distribution over hyperparameters and windows

settings as they all yield similar results. This provides strong evidence for the

superiority of the new features since a wide range of RF produce competitive

property crime predictions.

The results for the GBM predicting violent crime are different: the prediction

errors are more variable as a function of hyperparameters and windows and

the best-performing hyperparameter combinations at each window are more

dissimilar than for property crime. Given that these results are obtained with

Census data only, the sensitivity to the window choice is not surprising.
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6. Discussion

Our mixed approach of explanatory analysis and prediction reflects the dual

objective of police and policy makers. We can not only show that crime fore-

casting benefits from including the novel feature, we also shed light on the

emergence of urban crime and find clear support for well-known crime theories.

This provides clear guidance on how to conceptualise and address crime in a

predictive policing context.

The forecasting results show that using the new features significantly im-

proves the prediction accuracy for property crime. We find that adding static

data such as POI venues does not suffice to forecast crime counts accurately.

Instead, dynamic Twitter or taxi data and in particular their interaction greatly

reduce the prediction error. These results are in line with prior work by Wang

et al. (2016) and Bendler et al. (2014). We suggest that a combination of

node-specific data on the demographic make up as well as the visitor make up

through Twitter and POI data in combination with edge-specific data on social

taxi flow is the best combination of different data sources to predict property

crime counts. The taxi feature proxies human dynamics between areas and how

people proliferate crime through space. The spatial dependence matrix models

only first-order dependence of immediate neighbours. Many taxi trips traverse

multiple areas such that the taxi feature accounts for social connection and

crime proliferation beyond just neighbouring sites.

For violent crime, however, the spatio-temporal dimension of the new fea-

tures adds very little. Our explanatory analysis reveals the origins of this result.

Violent crime is taking place in neighbourhoods with poor social cohesion as ev-

ident by the positive association with vacant homes and female-headed family

households. In line with disorganisation theory, social deprivation provides the

context for delinquent, violent behaviour Kubrin & Weitzer (2003). Support

for social disorganisation theory is supplemented by the fact that violent crime

counts are not particularly sensitive to POI venues. That long-term structural

conditions are more important for violent crime is further emphasised by the
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poor explanatory and predictive performance of short-term human activity as

captured by the novel features.

In contrast, property crime is far less related to the residential make up of

the census tract where the crime takes place. Rather than local deprivation, lo-

cal opportunities through anonymity and vacant homes matter. The coefficients

and variable importance rankings capture a trade-off between more opportuni-

ties and targets through high human activity on the one hand and more watchful

eyes, deterring crime on the other hand. This is for instance illustrated in the

negative association of property crime with nightlife and residential venues and

the positive association with shopping venues. The notion that different circum-

stances drive property and violent crime differently is further supported by the

rather low correlation between the crime types (Pearson’s r = 0.17), indicating

that the two crime types take place in areas with very different characteristics.

Police react to crime with temporary resource allocations as well as with

long-term policy decisions on funding, intervention programmes and task forces.

In order to tackle crime, public decision makers depend on both immediate,

accurate crime volume forecasts and insight into the underlying crime generating

process.

Our explanatory analysis reveals that violent crime emerges from long-standing

social environments where short-run movement dynamics do not matter. Based

on these results, crime prevention strategies need to account for this spatial and

structural difference. Since violent crime is a more slowly-varying process, corre-

sponding crime prevention programmes need to address long-standing issues of

re-victimisation and re-offending through youth and family support programmes

and partnerships with affected communities.

In contrast, our results indicate that to prevent property crime, police need

to be aware of its transitory, changing nature. It is driven by localised op-

portunities, which means that interventions need to target those intersections

of opportunity and offender. In particular, the relevance of the taxi feature

demonstrates that in large cities, both offenders and victims cross large dis-

tances, propagating crime. This implies that police need to consider not only
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neighbouring areas but also connections to areas that are further away. Anony-

mous data on human behaviour can be crucial in identifying these links.

At the time of study, the limited availability of Twitter data constrained

the time period of study. Future research can exploit different sources of social

media activity and investigate whether similar results hold outside of the United

States.

7. Conclusion

This paper presents a multi-model solution to predicting the number of crime

incidents in a census tract by combining demographic data with aggregated so-

cial media, venue and taxi flow data. In addition, it addresses the two-fold

concerns of policy makers: preventing crime in the short run through resource

allocation and preventing crime in the medium run through prevention pro-

grammes.

Using a rolling-window prediction approach, we provide robust evidence that

new features accounting for human activity improves forecasts for crimes shaped

by local opportunities. By not only relying on previous crime observations and

quinquennial census data but rather on abundantly available behavioural data,

the models can generalise to new areas or areas with poor reporting rates.

Following an applied perspective, the proposed approach can be employed

to predict future problematic crime areas and improve police responsiveness

and resource allocation. By analysing underlying mechanisms of different crime

types, promising areas for intervention have been identified.
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Appendix A. Grid Search Parameters

Table A.10 details which parameters were optimised during a grid search.

We use early stopping when the MSE does not decrease by at least 0.01% for 5

consecutive scores. Where different, we supply the values used for property and

violent crime fitting separately.

Appendix B. Coefficients in rolling window estimation

Since we re-estimate the linear models in each window, we obtain a distri-

bution of coefficients over 13 windows. Since setting 8 includes all variables, we

present the coefficients for all models for setting 8.
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Figure B.6: Coefficient distribution for property crime for Setting 8 over 13 windows.

Figure B.7: Coefficient distribution for violent crime for Setting 8 over 13 windows.
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Model Parameter Range of values

Property Violent

GBM

Learn rate 0.01–0.2 with 0.01 increments
Learn rate annealing 0.990–0.998 with 0.001 incre-

ments
Maximum allowed tree depth 13–21 7–15
Row sample rate 0.20–1 with 0.05 increments
Column sample rate 0.20–1 with 0.05 increments
Column sample rate per tree 0.20–1 with 0.05 increments
Minimum number of rows in a
terminal node

4, 8, 16, 32, 64, 128, 256, 512

Number of bins used for split 16, 32, 64, 128, 256, 512, 1024
Error improvement threshold for
split

0, 10−8, 10−6, 10−4

Histogram type at each node Quantiles Global, Round Robin
Number of trees 10,000

NN

Learning rate adaptive (ADADELTA)
Neurons in hidden layer(s) 64, 128, 256, 512
Number of hidden layers 1, 2
Epochs 1, 10, 20
Learning rate decay 0.95, 1 (no decay)

RF

Maximum allowed tree depth 11–19 7–15
Row sample rate 0.20–1 with 0.05 increments
Column sample rate 0.20–1 with 0.05 increments
Minimum number of rows in a
terminal node

4, 8, 16, 32, 64, 128, 256, 512

Number of bins used for split 16, 32, 64, 128, 256, 512, 1024
Error improvement threshold for
split

0, 10−8, 10−6, 10−4

Histogram type at each node Quantiles Global, Round Robin
Number of trees 10,000

Table A.10: Range of grid search values for hyperparameter optimisation

34


	Introduction
	Related Work
	Methodology
	Linear Models
	Count Models
	Machine Learning Models
	Rolling window prediction

	Data Integration and Feature Construction
	Census
	New York City Crime Data
	Foursquare
	Taxi
	Twitter
	Evaluation and Feature Selection

	Results
	Discussion
	Conclusion
	Grid Search Parameters
	Coefficients in rolling window estimation

